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Abstract. We argue on general grounds that the transition to turbulence in plane Couette flow is best
studied experimentally at a statistical level. We present such a statistical analysis of experimental data
guided by a parallel investigation of a simple coupled map lattice model for spatiotemporal intermittency.
We confirm that this generic type of spatiotemporal chaos is relevant in the context of plane Couette flow,
where the linear stability of the laminar regime at all Reynolds numbers insures the necessary local sub-
criticality. Using large ensembles of similar experiments, we show the existence of a well-defined threshold
Reynolds number above which a unique, turbulent, intermittent attractor coexists with the laminar flow.
Furthermore, our data reveals that this transition to spatiotemporal intermittency is discontinuous, i.e.

akin to a first-order phase transition.

PACS. 47.20.-k Hydrodynamic stability — 47.20.Ky Nonlinearity (including bifurcation theory) —
47.27.Cn Transition to turbulence — 05.45.4+b Theory and models of chaotic systems

The plane Couette flow, in which a fluid layer is sheared
between two parallel plates moving with opposite tan-
gential velocities, offers one of the most intriguing frame-
works for studying the transition to turbulence. Whereas
the simple linear laminar velocity profile is stable at all
Reynolds numbers R [1], it is well known that finite-ampli-
tude perturbations may trigger abrupt, localized transi-
tions to turbulent spots if R is sufficiently large [2—4].

Despite an already considerable literature on plane
Couette flow, the statistical aspects of this important case
of transition to turbulence have so far been largely unex-
plored. Most works were performed from a rather conven-
tional fluid dynamics point of view, e.g. in order to uncover
particular nonlinear solutions not continuously related to
the laminar flow [5,6], or to extend the stability analysis of
the laminar profile to account for long “transients,” by ex-
ploiting the so-called non-normality of the linear operator
(7).

At a more qualitative level, it has been recognized that
plane Couette flow possesses all the necessary ingredients
for exhibiting spatiotemporal intermittency, a generic type
of spatiotemporal chaos akin to the behavior of directed
percolation-like models above threshold [8]. Indeed, the
sustained disordered regimes observed at relatively high
Reynolds numbers, in which turbulent spots move, grow,
decay, split, and merge, have been described in terms of a
“contact process”, i.e. a process in which active/turbulent
regions may invade absorbing/laminar domains where
disorder cannot spontaneously emerge [3]. Even though
spatiotemporal intermittency refers to spatially-extended
deterministic systems, this high-dimensional chaotic

behavior is best described and analyzed from a statistical
viewpoint, as suggested by the analogy sketched above
with probabilistic cellular automata with one absorbing
state, a class of models much studied in non-equilibrium
statistical mechanics (see, e.g., [9]). Furthermore, as ar-
gued in detail below, the spatiotemporal intermittency
framework implies that the turbulent regimes of plane
Couette flow must be approached statistically. As a matter
of fact, this was implicitly realized by Daviaud et al. [3],
who presented results based on small ensembles of about
10 experiments.

In this work, we present extensive experimental re-
sults on the transition to turbulence in plane Couette flow.
Large ensembles of similar experiments were performed to
provide meaningful statistics. Their analysis is guided and
supplemented by parallel results obtained through numer-
ical simulations of a coupled map lattice model showing
spatiotemporal intermittency. Our general conclusion is
that the experimental results are fully consistent with a
discontinuous (first-order like) transition to spatiotempo-
ral intermittency. This confirms the findings of a recent
short paper [10], of which our work can be seen as an
extension.

The paper is organized as follows. In Section 1, we
briefly present the experimental setup and detail the pro-
posed analogy between the turbulent regimes of plane
Couette flow and spatiotemporal intermittency. The basic
results for the transition to spatiotemporal intermittency
are recalled in Section 2, with the help of the coupled
map lattice model mentioned above to guide the statisti-
cal analysis of experimental results. A general definition
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Fig. 1. Experimental setup with (1): transparent plastic belt,
(2): guiding cylinders, immersed in a tank filled with water,
and velocity profile of the basic flow).

of the threshold Reynolds number in plane Couette flow
is given in Section 3. In Section 4, we revisit the “quench”
experiments already presented in [10], in which a highly-
turbulent system is suddenly brought to lower R values,
and compare them to similar numerical experiments per-
formed on our simple reference model. Section 5 is devoted
to “bubble” experiments of the type first performed by
Daviaud et al. [3], where a controlled, localized perturba-
tion is introduced into the laminar flow. A detailed statis-
tical analysis is presented both below and above thresh-
old, together with the coresponding results obtained on
the reference model. We conclude (Sect. 6) with a gen-
eral discussion of our results and perspectives at both the
experimental and modeling levels.

1 General setting
1.1 Experimental setup and basic flow regimes

The experimental setup has already been described in de-
tails elsewhere [3]. Here, we recall only its main character-
istics. The flow is realized inside a long belt of transparent
plastic (1) maintained in tension and guided by two rollers
(2), as seen in Figure 1. We use a gap L, = 2h = 7Tmm
between the two “plates”. The control parameter is the
velocity £U (measured in the lab frame) of the plates, so
that the Reynolds number is R = Uh/v with v the kine-
matic viscosity of water, the fluid used. The spanwise and
streamwise aspect ratios are, respectively, I, = L,/2h ~
35and Iy, = L, /2h ~ 190. The measurements reported in
this work derive from image-processing of a video record-
ing of the central plane between the plates. To this aim,
the flow is seeded with iriodin, and illuminated by a thin
laser sheet in the central (z, z) plane.

At large Reynolds number, a highly turbulent state
arises spontaneously, the small inhomogeneities and/or
boundary effects being large enough to destabilize the lam-
inar flow. Decreasing R slowly, turbulence is only inter-
mittent: a typical snapshot (Fig. 2) reveals strongly dis-
ordered patches separated by regions in which the flow
is very close to the laminar profile. At any given point
in space, the recorded activity is also intermittent, in the
form of a “telegraphic” signal composed of a succession
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Fig. 2. Typical snapshot of the flow in a sustained spatiotem-
poral intermittency at R = 320. This image was taken dur-
ing an experiment realized with a gap 2h two times smaller
than that used in the statistical analysis presented here (2h =
3.5mm).

of turbulent and laminar periods. Such regimes, which do
not arise when increasing R “adiabatically” (e.g. when in-
creasing R by small steps separated by several minutes),
can be sustained indefinitely in our experiment at large
enough R. Decreasing R further, turbulent spots eventu-
ally disappear, and the fully laminar flow is always ob-
served asymptotically.

The fine structure of the turbulent regions is still
mostly unknown, and has motivated numerous hydrody-
namical studies. From the view point adopted here, it is
largely irrelevant, as long as the fronts separating the two
basic states of the flow are sharp enough. The stream-
wise vortices often detected around the edges of turbulent
regions [11] set the scale of the front width. This rather
well-defined width is the condition for a reliable and mean-
ingful detection by image processing.

1.2 Analogy with spatiotemporal intermittency

As argued above, the intermittent character of the flow
both in space and time allows us to distinguish two differ-
ent local states. The laminar state can be defined rather
accurately by reference to the stable linear velocity pro-
file. The “turbulent” state, however, largely reflects our
(volontary) ignorance of the structure of turbulent spots.
This reduction to two states should be seen as a first-order
approximation which, nevertheless, should not influence
the results presented below, at least at a qualitative level.

A crucial point is that the two local states are asym-
metric: the linear stability of the basic flow implies that
large laminar regions may only get destabilized at their
boundaries with turbulent spots or under the influence of
external finite-amplitude perturbations (in the assumed
absence of long-range interactions). This is the case at
least in an ideal (noiseless) experiment performed in an in-
finite (x, z) domain. In practice, there is always a Reynolds
number above which residual noise or imperfections at
the boundaries are strong enough to trigger turbulent re-
gions, given that the metastability of the laminar state
“decreases” with R [12,13].
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Nonetheless, the essential ingredients of spatiotempo-
ral intermittency are present: one can picture — at a crude
but informative level — the complex space-time evolution
of the intermittent regime as a contact process between two
states, one of which (the laminar one) is absorbing. This
vocabulary refers to a large class of statistical mechanics
problems, of which directed percolation is the most famous
[9]. However, this privileged situation can be somewhat
misleading, since directed percolation is known mostly for
exhibiting a continuous (second-order like) phase tran-
sition marking the limit of sustained existence of active
sites. As a matter of fact, contact processes such as two-
state probabilistic cellular automata with one absorbing
state do not all exhibit continuous transitions. For space
dimensions of two and higher — the case of interest here
— discontinuous transitions are possible as well [14].

To illustrate these ideas, in the next section we do not
use probabilitic cellular automata such as those evoked
above, but, rather, introduce a simple spatially-extended
dynamical system for which disorder arises from determin-
istic chaos. This is a choice motivated only by our will to
stay within a framework sometimes thought more suitable
for fluid flows.

2 A minimal model of reference

The analogy mentioned above between spatiotemporal in-
termittency and contact processes such as directed perco-
lation, originally suggested in a seminal paper by Pomeau
[15], was investigated using various kinds of spatially-
extended dynamical systems [16]. In order to deal with
the “core” issues and only them, a minimal model was de-
signed in the form of a coupled map lattice, i.e. a discrete-
time, discrete-space dynamical system [17]. In the follow-
ing, we consider the two-dimensional version of this model,
and revisit the results obtained in [18] in the context of
the transition to turbulence in plane Couette flow.

Space is represented by a square lattice with real vari-
ables X; ; at each node updated synchronously at discrete
timesteps according to:

XE = (1= o) f(XE)
e

1

(X + X+ X+ X500 (1)

where ¢ is the diffusive coupling strength. The local map
f is defined by (Fig. 3):

rX if X €[0,1/2]
r(l - X) if X €[1/2,1]
k(X — X*)+ X*if X > 1

f(X) = (2)

with X* = (r +2)/4, |[k] < 1, and r > 2 (r = 3 in this
work).

Although by no means unique, this choice of f reflects
the basic requirements for spatiotemporal intermittency:
as long as X < 1, the evolution under f is chaotic (f
is then just a tent map of slope r > 1). This chaos is
transient only because the unit square is not invariant
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Fig. 3. Local map f of the coupled map lattice model.

(r > 2), and one eventually reaches a fixed point when
X > 1. The local phase space of f is thus a chaotic re-
pellor connected to a stable fixed point. This provides a
natural distinction between a “turbulent” (X < 1) and a
“laminar” local state. When ¢ is small, the evolution of the
lattice is similar to the uncoupled case: every site eventu-
ally reaches a fixed point whatever its initial value. For
large ¢, however, the influence of neighbors can be strong
enough to bring a site back into the turbulent state, and
spatiotemporal chaos can be sustained: the local chaotic
repellor gives rise to a global chaotic attractor. Of course,
the emergence of sustained spatiotemporal intermittency
requires that at least some sites initially be in the turbu-
lent state. In other words, the laminar state is absorbing:
if a site and its neighbors are laminar at time ¢, then the
central site remains laminar at time ¢ + 1 independent
of the value of €.

The chaotic regimes, intermittent in both space and
time, are observed above some well-defined threshold value
€¢. At the crudest level, following the analogy with contact
processes such as directed percolation, the transition can
be monitored by the behavior of (m), the time-averaged
turbulent fraction, or, equivalently, the mean concentra-
tion of active sites, treated here as the “order parameter”.

It was shown numerically in [18] that the transition
occuring at e, can indeed be considered as a phase tran-
sition similar to that of contact processes. It was further
shown that its nature depends upon the parameter used:
for k = 1, the transition is continuous (second-order like),
i.e. the order parameter goes continuously to zero when
decreasing ¢, like (m) ~ (¢ — e.)™? with a critical expo-
nent 5 ~ 0.52 close to, but different from, the correspond-
ing directed percolation value (Bpp ~ 0.58) (Fig. 4a). For
k < 1, however, the transition is discontinuous (first-order
like) and (m) jumps to zero at € = . (Fig. 4b).
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Fig. 4. Time-averaged turbulent fraction vs. coupling parame-
ter in the coupled map model. (a) k = 1 (continuous transition)
(m) goes continuously to zero at €. ~ 0.171. Inset: log-log plot
showing the algebraic decay of (m). (b) k = 0.5 (discontinuous
transition) (m) jumps to zero at . ~ 0.64. The dashed line
indicates the metastable states observed below threshold.

3 Defining a threshold in plane Couette flow

The brief description, given in Section 1.1, of the various
regimes observed in plane Couette flow suggests the ex-
istence of a threshold Reynolds number R, below which
all turbulence eventually dies out, and above which sus-
tained disordered regimes may be observed. It is also clear
from the previous section that this definition coincides
with that of €. in our minimal model for spatiotempo-
ral intermittency. In terms of the total phase space of the
system, no chaotic attractor exists below threshold. This
is equivalent to saying that the laminar flow is the global
attractor of the system below threshold only if there does
not exist any stable solution other than the laminar flow.

Despite its simplicity, the above definition has only
been investigated quantitatively recently [10]. One of
its inherent problems is that it implicitly refers to
the behavior of an infinite system observed over in-
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Fig. 5. Mean turbulent fraction vs. Reynolds number for plane
Couette flow. Points linked by the thick solid line correspond
to R values at which turbulence “never” dies out (tmaz of the
order of 600 s). The points linked by the dashed line were esti-
mated from the metastable plateaus characterizing the weakly
repelling nature of the intermittent phase below threshold (see
Fig. 6a). The limit value R, marks (very approximately) the
limit of existence of these plateaus.

finitely long periods. In practice, one always has to deal
with finite-size systems and finite observation times, al-
though such size effects can usually be accounted for,
and rather safe extrapolations to the infinite-size limit
can be made. In our experimental system, for exam-
ple, one can measure m(t) (defined here as the total
surface occupied by turbulent regions over L, x L)
and choose a maximal duration t,,,, past which turbu-
lence is declared to be “sustained”. This procedure yields
an effective threshold R.(¢maqz), which should converge to
some limit value, as t;q, — 00. Finite-size effects could
also be estimated in the same way, ultimately leading to
the actual threshold value.

Unfortunately, this approach is too tedious to be fol-
lowed completely. One can, however, at a fixed system size,
choose a single large value of ta. (say, tmex = 600s),
and record (m) for the R values for which disorder was
sustained up to t;4.- Figure 5 shows the results for our
experiments. Remarkably, the recorded values of (m) de-
crease only slightly with R and suddenly jump to zero at
some effective threshold around R, ~ 323 £ 2. This indi-
cates that the transition is discontinuous, a fact confirmed
by our other experiments.

There exist better ways to estimate the threshold and
to determine the nature of the transition. They have been
explored in detail for simple models of spatiotemporal in-
termittency (see, e.g. [17,18]). At the experimental level,
one is more constrained, but meaningful protocols can
be followed. As explained below, they are intrinsically
statistical and involve determining probabilities, expecta-
tion values, etc., from an ensemble of similar experiments.
We now present these results and discuss them in detail
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Fig. 6. Quench experiments in plane Couette flow. (a) Typical time series of m obtained at R = 305, 312 and 318. The
horizontal lines represent the estimated values of (m) on the metastable plateaus. One might be tempted to distinguish other,
lower “plateaus” from these time series; they might be considered as an indication of the “separatrix” between the laminar
attractor and the intermittent repellor. Note that R = 305 is a Reynolds number lower than R,. (b) Logarithms of histograms
of lifetimes after quench (ensembles of 50-100 experiments). (c) Logarithms of cumulated histograms of lifetimes after quench.

(d) (7) vs. R; inset: 1/(7) vs. R.

with the help of similar statistics gathered from numerical
simulations of our minimal reference model.

4 Quench experiments

One efficient way of controlling time-effects in our prob-
lem is to perform quench experiments: the system is first
brought to a steady regime far above threshold where ini-
tially introduced turbulence occupies most of space, and
for which decay is never observed [19]; the control param-
eter is then decreased suddenly. If the control parameter
value to which the system was quenched is below thresh-
old, then disorder dies out in a finite time 7. The threshold
R, or . is defined as the value above which (7), the en-
semble average of 7 over a large set of experiments, is
infinite [20]. This procedure has the advantage of being
based only on finite-time quantities, but is not free from
finite-size effects. For a given system size, it yields an effec-

tive threshold a priori above the asymptotic (infinite-size)
value.

4.1 Experimental results

Series of quench experiments on our plane Couette
flow system were performed by suddenly decreasing the
Reynolds number from a steady, highly-turbulent regime
observed at R = 380. For low R values, the time series of m
was recorded and 7 was detected (Fig. 6a). About 50-100
experiments were done for each R value, and the distri-
bution of 7 values was constructed. The direct histograms
of 7 (Fig. 6b) reveal that the mean, the most probable
value, and the smallest value recorded all increase when R
increases. The cumulated histograms (Fig. 6¢) allow a bet-
ter determination of the exponential tail at large 7. The
mean lifetime (7) can then be measured from the slope
of this tail in a lin-log plot, or simply from the mean of
the distribution. These two values are close to one other,
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and behave in the same manner as a function of R. In
particular, (7) increases continuously and strongly with
R, suggesting a divergence at some finite R value. Of
the different simple possible fits for this data, the most
satisfactory yields (7) ~ 1/(R. — R) with R. ~ 323 £+ 2
(Fig. 6d).

4.2 Numerical results

Quench experiments on the simple coupled map lattice
defined in Section 2 have been performed for k = 1 (con-
tinuous transition) and k = 0.5 (discontinuous transition).
In both cases, the distributions of 7 values exhibit expo-
nential tails (Figs. 7a, 8a). In both cases, the mean and the
most probable value increase when approaching threshold.
The mean lifetime of turbulence (7) can be defined either
from the tails or simply from the mean of the distribution.
In the continuous case, however, a region of algebraic dis-
tribution appears in the critical region near .. In both
cases, a divergence of () is observed when increasing e
toward .. Thus the qualitative behavior of (7) is similar
to that observed in the laboratory experiments, but with-
out distinguishing between continuous and discontinuous
transitions.

At a quantitative level, the divergence of (r) dif-
fers. In the case of a continuous transition, one expects
(1) ~ (ec — €)1 with a non-trivial critical exponent v.
The calculations presented in Figure 7b lead to v ~ 1.18.
For the discontinuous case studied, (k = 0.5), we find a
simple integer exponent (Fig. 8b): (1) ~ 1/(g. — ).

The two cases also differ when one considers the time
series of the mean turbulent fraction (m)(t) (Figs. 7c, 8c).
Near threshold, an algebraic decay of (m)(t) is observed
for k = 1, whereas the discontinuous case presents a typ-
ical plateau —the signature of the metastability of the
intermittent phase near and below threshold— followed
by a sudden decay to zero. In this last case, one also ob-
serves large variations from run to run, as the duration of
the metastable transient changes.

4.3 Discussion

The experimental data sets are still too limited to allow a
precise estimate of the exponent governing the divergence
of (). Nevertheless, the best fit (1) ~ 1/(R.— R) suggests
a simple value of the exponent, consistent with the discon-
tinuous case. The behavior of (m)(t) cannot be resolved
by our experiments either. However, the inspection of in-
dividual experiments shows that, near and below thresh-
old, m(t) often lingers for long periods of time around
some well-defined value before eventually experiencing a
fatal fluctuation, after which turbulence dies out (Fig. 6a).
These individual events indicate the metastable character
of the intermittent phase below threshold. They are also
observed near and below threshold of the discontinuous
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transition in our simple model, but not in the continu-
ous case. They are in fact at the origin of the plateau of
Figure 8c for € = 0.63.

In terms of global phase space structure, our data indi-
cates that the intermittent chaotic attractor present above
threshold becomes a (weakly) repelling set below thresh-
old, in agreement with the picture of a first-order-like tran-
sition (the active phase becomes metastable below the
“Maxwell” point) [15]. This allows the extension of the
(m)(R) curve beyond R, (Fig. 5), using the values of the
metastable plateaus.

All of these elements lead to a conclusion as to the
discontinuous character of the transition to turbulence in
plane Couette flow. The thresholds determined by quench
experiments are, a priori, slightly overestimated because
they are not free from finite-size effects [21]. We now turn
to experiments which can be considered free from size ef-
fects, where localized perturbations are introduced into
the laminar flow.

5 Bubble experiments

The general idea of the possible conditional stability of the
laminar flow at high Reynolds numbers, led previous inves-
tigators to look for a way of creating controlled perturba-
tions of tunable amplitude. Indeed, one could then hope to
provide evidence for the existence of a “critical” amplitude
above which perturbations would lead to sustained turbu-
lence, and below which they would decay. Here, we perturb
the laminar flow by the method used in [3,4,22]. In these
experiments, a small jet is sent across the (z, z) plane due
to small holes drilled in the middle of the belt, thus cre-
ating a small disordered “bubble”. The duration and the
amount of water injected are controlled. We now present
new results using the same method, analyzing them within
the general framework of spatiotemporal intermittency.

5.1 General considerations

First, we would like to stress that the above idea, which
exploits the local subcriticality of the system, does not im-
ply the global subcriticality (or discontinuous character) of
the transition [16]. In the context of spatiotemporal inter-
mittency, the existence of two distinct local states at “fi-
nite distance” from each other —the local subcriticality
— is required, but the transition can be either supercrit-
ical/continuous or subcritical/discontinuous. However, as
we discuss in detail below, this approach may indeed allow
one to distinguish between the two possibilities.

Introducing localized perturbations may be a priori
thought to be a good manner of avoiding finite-size effects.
But other problems may arise which, briefly speaking, are
related to the “efficiency” and the “relevance” of the mode
of perturbation adopted.

Let us again take the point of view of the global phase
space of the system, following Dauchot and Manneville
[13]. In the laminar regime, the attractor is a stable fixed
point. External arbitrary perturbations take the system
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Fig. 7. Quench experiments in the simple reference model with
k = 1. A lattice of 642 sites with periodic boundary conditions
was thermalized at € = 0.2 during 400 timesteps before the
quench. Ensembles of 2000 runs. (a) Log-log plot of histograms
of lifetimes after quench. From left to right: ¢ = 0.162, ¢ =
0.168, € = 0.170. (b): (1) vs. R; insert: log(7) vs. log(e. — €)
with e, = 0.1715. (c): log(m) vs. log t near and below threshold
(e = 0.171, top, and € = 0.166, bottom).
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to points of phase space either inside or outside the basin
of attraction of the laminar attractor. A complete knowl-
edge of the effect of the perturbation in phase space is a
very hard problem, and one can only hope that the per-
turbation method does allow to leave the basin of attrac-
tion of the laminar solution. This efficiency of the method
of perturbation used below and in earlier works [3,22] has
fortunately been confirmed by experiments: strong enough
jets at large enough Reynolds numbers do lead to sus-
tained turbulence.

A further but related point concerns the relevance of
perturbations, i.e. their ability to produce significantly
different effective initial conditions. Given their arbitrary
character, the perturbations can be considered to almost
certainly bring the system out of its inertial manifold, i.e.
the (finite-dimensional) subset of phase space to which
all trajectories are attracted exponentially fast [23]. This
manifold is not the attractor, but contains it; rather, it is
the subset of phase space on which all transients evolve
after a very short time. Varying the “amplitude” of the
localized perturbations only makes sense if the “landing
points” on the inertial manifold after the short transient
are different.

Another problem inherent to introducing external per-
turbations is that only statistical arguments can then be
used, a fact overlooked in previous studies. As always in
an experimental context, the initial perturbation is not
perfectly controlled. In addition, the transients following
perturbations can be considered chaotic, and thus subject
to sensitivity to initial conditions. Moreover, above thresh-
old, the separatrix between the basins of attraction of the
laminar flow and the chaotic/turbulent attractor is gener-
ically a very complex, fractal hypersurface in phase space.
This implies that one cannot rely on single experiments to
decide whether perturbations of a given amplitude lead to
the turbulent attractor or not. Indeed, in the transitional
region, the same experiments may lead to the decay of
the initial bubble or to its expansion toward the turbulent
attractor [24]. The only meaningful quantity is the prob-
ability p, over a large ensemble of experiments, to reach
the turbulent regime. A threshold can then be defined as
the point where this probability is, e.g., p = 1/2. We note
here that, while such considerations have been largely ig-
nored in past studies of plane Couette flow, Darbyshire
and Mullin adopted a similar point of view in their exper-
iments on pipe flow [26].

We note finally that, in practice, experiments introduc-
ing localized perturbations are not free from time effects:
the probability p can only be determined once a thresh-
old t,,42 is chosen to discriminate between finite lifetimes
(T < tmaz) and “infinite” ones (7 > tmaz). Again, the
thresholds thus defined are expected to converge to well-
defined values as t;,4, — 00, but it is nearly impossible
to study this convergence experimentally.

5.2 Experimental results

Series of experiments were performed by locally perturb-
ing the laminar flow, either at a fixed Reynolds number
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Fig. 9. Bubble experiments in plane Couette flow. Typical
time series of s (thin lines) and time series of (s)(t) (thick
lines) at R = 330 for A = 1.6 (solid lines) and A = 3.1 (dashed
lines). For A = 1.6, all bubbles die in finite time (p = 0), while
for A = 3.1 one-fourth of the initial bubbles grows to reach the
intermittent attractor (p ~ 0.25).

and varying the amplitude of perturbation, or the oppo-
site. Here, the amplitude A of the perturbation is just the
velocity of the jet, its duration being kept fixed and very
short (of the order of 10~! s) compared to the viscous time
scale (of the order of 1 s) [27].

We recorded the time series of the area of the turbulent
bubble normalized by the total size of the (z, z) plane. In
order to stress that this quantity is not intensive, contrary
to the turbulent fraction m of the quench experiments of
Section 4, we denote it s. Figure 9 shows typical time se-
ries of s as well as (s). At given R and A values, the initial
perturbation first grows quickly to a bubble of size s* in
a short time ¢*, then either grows to reach the chaotic at-
tractor or decays to zero, to die at time 7 (Fig. 9). Quanti-
ties s* and t* are only well-defined statistically. We inter-
pret the short transient time t* leading to a well-defined
turbulent “bubble” of size s*, as the time needed to come
back to the inertial manifold. This is corroborated by the
fact that ¢* hardly varies with A (Fig. 9), in accordance
with an expected logarithmic dependence (the trajectory
goes exponentially rapidly to the inertial manifold). On
the other hand, s* increases significantly with A (Fig. 9),
which we take to be an indication of the relevance of the
method of perturbation (different perturbations produce
different effective initial conditions).

5.2.1 Above threshold: critical amplitude curve

We determined the location of the p = 1/2 curve in
the (R, A) parameter plane. For each point studied, up
to 100 experiments were performed, with a chosen cut-
off t;nar = 300s. We checked that this value was large
enough so that it has only limited influence on the thresh-
olds. In fact, varying either A or R, p varies continuously
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Fig. 10. Bubble experiments in plane Couette flow. Series of
50-100 experiments for each point (R, A). (a) probability p of
reaching the turbulent attractor as a function of A for fixed
R = 335. (b) same but at fixed amplitude A = 4.75 varying R.

but rather sharply from 0 to 1 (Fig. 10), allowing a precise
determination of the threshold.

The final outcome of this long process is presented in
Figure 11 and takes the form of a “critical amplitude”
curve A (R) in agreement with that presented by Dau-
chot et al. [22]. (We note that the critical amplitude curve
of [22] can only be taken as indicative since it does not
rely on statistical analysis.) Our results clearly show that
stronger and stronger perturbations are needed to reach
the turbulent state when R is decreased. The curve sug-
gests a divergence of A, at some finite value of R, as in
ordinary first-order phase transitions. Given the limited
range of variation of A. available, it is impossible to de-
termine the exact nature of this divergence. The data is
however well-accounted for by a functional variation of
the form: A, ~ (R — R.)® with R, ~ 325 and o ~ 0.7.
The validity of this fit is strengthened by the fact that the
estimated threshold is equal, up to the experimental ac-
curacy, to the value measured from quench experiments.
We discuss the meaning of a divergence and this exponent
below (Sect. 5.4).
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Fig. 11. Critical amplitude curve A.(R), as determined by the
location of the p = 0.5 curve in the (A4, R) plane.

5.2.2 Below threshold

Similar series of experiments were also performed at lower
R values, and for perturbations amplitudes A such that
the initial turbulent bubble always decay (p = 0 region).

The distributions of 7 values thus obtained show a
well-defined most probable value and a quickly decaying
tail, which insures the existence of (1) (Fig. 12a). Note
that, contrary to the quench histograms, here the most
probable value does not increase significantly with R. The
cumulated histograms (Fig. 12b) are also qualitatively dif-
ferent from those of quench experiments (compare to Fig-
ure 6¢). Approaching threshold, say at fixed A and in-
creasing R, (1) increases but does not diverge (Fig. 12c)
as for the quench experiments (compare to Fig. 6d). All
these findings are discussed in Section 5.4 below, in the
light of the results obtained using our reference minimal
model.

5.3 Numerical results

What should be, for our simple coupled map lattice model,
the closest equivalent of the bubble experiments reported
above is not clear a priori. However, the interpretation of
the short transient time ¢* and the corresponding bubble
size s* suggests that, within our simple model, the initial
conditions for the equivalent experiments consist in cre-
ating a bubble of turbulent sites (X < 1) in an otherwise
fully laminar (X > 1) medium. Here, the initial surface
of the bubble, s, is taken as A, the “amplitude” of the
perturbation. In the model, the initial perturbation thus
created first quickly relaxes to a (usually smaller) bubble,
as the system evolves back to its inertial manifold.

5.3.1 Around a continuous transition

In the case where our coupled map lattice model shows
a continuous transition to spatiotemporal intermittency
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Fig. 12. Below-threshold bubble experiments in plane Couette
flow. Series of 100-300 experiments. (a) Histograms of lifetimes
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(k = 1), bubble experiments statistics are clearly different
from those of Section 5.2.

Approaching the threshold e. from below, the distri-
bution of bubble lifetimes 7 crosses over from exponen-
tial to algebraic tails, and the mean lifetime diverges like
(1) = K(s0)(ec — €)"1 where k depends only weakly on sq.
Note that this dependence is the same as the one expected
for quench experiments (see Sect. 4.2). This is one char-
acteristic property of the continuous-transition case: all
initial conditions with some active sites lead to the same
asymptotic state.

Above threshold, the probability p, which in the di-
rected percolation framework would correspond to the
probability of percolating to infinity, behaves like p =
K'(80)(e — €.)7?. This implies that there is practically no
dependence of the threshold on sg, especially if a small p
value is chosen to define the effective threshold.

The above behavior seems incompatible with the ex-
perimental results of Section 5.2. We will show that, on
the contrary, there is good agreement in the case of a dis-
continuous transition to spatiotemporal intermittency in
the model.

5.3.2 Around a discontinuous transition

We now report on bubble experiments in the case k = 1/2
where the transition is discontinuous. In fact, similar ex-
periments were reported in [18], and used to demonstrate
the existence, near and above threshold, of a critical size s,
which increases and seems to diverge when € — ¢.. Here,
we present more extensive numerical simulations, show-
ing results which shadow those obtained in plane Cou-
ette flow. Figure 13 shows the variation, along lines in the
(e, s0) plane, of the probability p for reaching the inter-
mittent attractor. Thanks to the simplicity of the model,
ensembles of the order of 10* experiments with a cut-off
time ¢4, = 10* are easily achieved, yielding very reliable
statistics almost free from finite-time effects.

Such series of experiments were performed at various
points in the (g, sg) plane. This allowed the determination
of a s.(g) curve (Fig. 14). As for the laboratory exper-
iments, the value p = 0.5 was chosen to determine this
curve. Again, we can try to fit a divergence of the form
sc ~ (¢ —€.)*. The data does not allow us to conclude
in any precise way, but (o« = 1, e, = 0.67) and (a = 2,
€. = 0.66) are two equally-plausible sets of simple values.

Below-threshold bubble experiments also yielded re-
sults very similar to those obtained by introducing local-
ized perturbations in plane Couette flow. In particular, the
mean lifetime (7) does not diverge at threshold (Fig. 15¢).
In the histograms of lifetimes (Fig. 15a), the most prob-
able value does not increase when approaching threshold,
as in the laboratory experiments (see Fig. 12a). We note,
however, that the shape of the distributions have no a pri-
orireason to be similar to those recorded in the laboratory,
since the deterministic processes involved in the shrinking
of a bubble in plane Couette flow are not accounted for
by the model. Such a discrepancy is indeed suggested by
the shape of the cumulated histograms in Figure 12b.
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5.4 Discussion

As already mentioned above, our experimental data from
bubble experiments in plane Couette flow seem to be com-
patible only with the scenario of a discontinuous transition
to spatiotemporal intermittency.

Nevertheless, the results obtained below but very near
threshold call for further discussion. For R close to R.,
say R = 324, some experiments last exceptionally long,
yielding 7 values not “expected” from the main shape
of the histograms. Our experimental setup does not al-
low us to explore the R-domain very near threshold with
enough accuracy to accumulate precise enough statistics.
Thus we cannot rule out a sudden divergence of (7) in a
very small R-interval. But, in our opinion, the likely ex-
planation for these rare events is the effectively-small size
of our system (in particular, the boundaries might have a
long “penetration length”), combined with some fluctua-
tions in the Reynolds number (R is kept constant to an
accuracy of R = 1, see [10] for details). As a matter of
fact, during these events, the initial bubble usually touches
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Fig. 14. Minimal model for k = 0.5: critical amplitude curve
sc(€), as determined by the location of the p = 0.5 curve in the
(s0,€) plane.

the boundaries, and its fate is then indistinguishable from
the case of quench experiments. The recorded lifetimes are
indeed of the order of those shown in Section 4.1. We be-
lieve these rare events should become rarer as the system
size is increased. At any rate, their weight in the calcula-
tion of () remains so small that the qualitative picture is
not changed.

Another point worth discussing is the status of very
large initial bubbles. Indeed, if the created bubbles are
large, they actually decay quickly in their bulk to a re-
gion of intermittent phase (i.e. usually with disconnected,
smaller, turbulent patches), and the problem is not quite
that of the fate of a localized perturbation: in the bulk, the
situation is that of a quench experiment. This regime is not
attainable in our experiment, due to its small effective size,
but it can be observed in our simple model. This shows
the difference between discontinuous transitions to spa-
tiotemporal intermittency and ordinary first-order phase
transitions, where the critical size — or, rather, the critical
radius of curvature — diverges at threshold. In the inter-
mittent case, laminar/absorbing domains are present, con-
trary to ordinary first-order transitions. Thus arguments
such as those involving the local radius of curvature of the
border of a (fully) active domain do not apply. They apply
only to small bubbles, of sizes smaller than those observed
spontaneously in the intermittent phase.

The series of bubble experiments performed above
threshold have enabled us to explore a fairly limited
portion of a critical amplitude curve. For the reference
coupled map lattice model, the difficulty of reaching the
immediate vicinity of the threshold is mostly due to the
accompanying increase of 7 (notwithstanding problems
related to the status of large initial bubbles). In plane Cou-
ette flow experiments, there exist other factors preventing
the study of large critical amplitude regimes. The method
of perturbation is, in practice, limited to a certain range of
amplitudes. But there may be deeper reasons: the choice
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map lattice model for £ = 0.5. Ensembles of 10000 runs, tmaz =
2000. (a) Histograms of lifetimes for so = 25 and ¢ = 0.676,
0.680, 0.684, 0.688. (b) Variation of (7) with ¢ for so = 25. Note
that the € values shown here for convenience are larger than
gc ~ 0.64, but, of course, smaller than the effective threshold
for this sp, which can be estimated from Figure 14 to be around
e = 0.69.

of the jet velocity as the observable quantifying the ampli-
tude of the perturbation is largely arbitrary. From our dis-
cussion of the relevance of perturbations, one might argue
that s*, on the other hand, provides a “meaningful” way of
estimating the amplitude. Plotting the critical amplitude
curve in terms of s* instead of A can, a priori, completely
change the nature of the extrapolated divergence. One can
even imagine that s* does not go to infinity when A does,
in which case no divergence would be observed near R..
Unfortunately, our experiments do not allow us to estab-
lish the precise mapping of s* as a function of A, and we
cannot, therefore, exclude this possibility.

The European Physical Journal B

6 Summary and perspectives

The parallel investigation — experimental and numerical
— presented in this work has shown that the transition
to turbulence in plane Couette flow is best interpreted,
at a statistical level, as a discontinuous (first-order-like)
transition to spatiotemporal intermittency.

We have stressed that only statistical arguments are
valid in an experimental context, due to the unavoid-
ably limited accuracy of initial conditions, the somewhat
“blind” character of the way of introducing localized per-
turbations into the laminar flow, and the sensitivity to
initial conditions expected whenever a chaotic attractor
is involved. We have argued that the transition is only
defined statistically even though the system is determin-
istic, and our results are indeed fully consistent with a
threshold defined in terms of an equivalent probabilistic
process. The threshold R. can be seen as the value sepa-
rating the regimes where the chaotic evolution among the
unstable non-laminar solutions existing in phase space —
such as the streamwise vortices [11]— can or cannot be
sustained forever in time. No major structural change oc-
curs in phase space at R.. Extending this phase space
picture a bit further, the Reynolds number R,, below
which all perturbations seem to decay quasi-monotonously
(see Fig.6a), could be related, on the other hand, to the
limit of existence of some of the nonlinear unstable solu-
tions mentioned above. As a matter of fact, in spatially-
extended systems showing spatiotemporal intermittency,
the above-mentioned nonlinear objects cease to exist be-
low the threshold. In the complex Ginzburg-Landau equa-
tion, for example, spatiotemporal intermittency regimes
are easily observed. They involve localized objects (e.g.
amplitude “holes”) which exist, be they stable or unsta-
ble, in a region of parameter space that includes the bor-
der of existence of sustained spatiotemporal intermittency
[28]. In plane Couette flow, the domain of existence of
the solutions found recently seems to extend well-below
R =325 [5].

Our analysis has also pointed to the respective merits
of quench and bubble experiments. Quench experiments
may be sensitive to finite-size effects, but they allow one
to explore directly the “natural” attractor or weak repel-
lor of the system in phase space. Bubble experiments, and,
more generally, all experiments in which localized pertur-
bations are introduced externally, suffer from a certain
degree of arbitrariness, if only because the structure of
the phase space of the system is usually unknown. Our
results have led to a proper definition of a “critical am-
plitude curve”, and we have argued that this curve has
no absolute significance. It depends on the type of local-
ized perturbations performed, on the observable chosen to
quantify their amplitude, and on the p-value chosen to de-
termine the threshold. Even though a limited portion of
one of these curves could be experimentally explored, the
data suggests a divergence at R..

The general framework of the transition to spatiotem-
poral intermittency points to “universal” properties,
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i.e. features expected to be independent of the details of
the system. In the case of interest here, that of a discontin-
uous transition, one might wonder in particular whether
the simple functional forms found experimentally and nu-
merically for the divergence of the mean lifetime (7) in
quench experiments below threshold are related. Our ex-
perimental results are consistent with (7) ~ (R. — R)™!,
while the numerical results yield (1) ~ (g, —)~2. We are
not able to provide a rigorous argument linking these two
simple numbers, but we believe the two exponents might
indeed be related by a factor of two. We note, however,
that a similar discussion comparing the nature of the di-
vergence of the “critical amplitude” curves obtained does
not make much sense in view of the relative arbitrariness
of these curves and of the very limited portions explored
in our experiments.

Our conclusions hold mostly at a qualitative level, and
no detailed quantitative agreement is expected from the
comparison of a phenomenon as complex as the intermit-
tent turbulence present in plane Couette flow with a de-
liberately minimal coupled map lattice model. Should one
want to construct a better model —we stress that this is
not the intention of the present work—, one would have,
at the very least, to change the coupling between sites to
account for advection modes, and for possible long-range
effects such as those suggested in [29] in the context of the
spiral turbulence regime of Taylor-Couette flow.

Many of the questions above call for an experimental
setup which would allow a more detailed investigation of
the threshold region. The most crucial factor in this con-
text is to increase the system size, and we hope that, in
the future, carefully controlled experiments with, say, as-
pect ratios four times larger, will be performed. Next on
the list of necessary modifications toward this aim is to
change the way of creating localized perturbations to be
able to explore a larger amplitude domain.

Finally, we wish that similar studies will be undertaken
in the future to approach other outstanding problems in
hydrodynamics such as plane Poiseuille flow.

We thank O. Dauchot, F. Daviaud and P. Manneville, for in-
teresting discussions, and C. Gasquet and D. Popot for techni-
cal assistance in the acquisition and treatment of experimental
data.
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